Lup:oft

A DXC Technology Company

SDV Actors: In search of a better
microservices environment for
software-defined vehicles

by Andre Podnozov, Chief Architect



Abstract

This is the next installment in a series of articles on SDV.Ops - our approach to developing and operating
software-defined vehicles (SDVs). In the first part, we discussed the agility challenge for SDVs, and then we introduced
the concept of SDV.Ops for solving that challenge. Now let’s explore in more detail one of the fundamental principles
of SDV.Ops: A flexible and efficient in-vehicle execution environment. While there are several interesting options for an
execution environment, we chose the Actor model of computation as the basis for this exploration.

What do we mean by
“Microservices’?

he success of the Agile software development
movement that started in the early 2000s was fueled to
a large extent by microservices. In its narrow meaning,
this word refers to microservices architecture, but with
a broader view, the microservice approach to building
cloud solutions consists of several aspects:
 Architecture: Breaking down large monolithic
applications into smaller independent services
» Process: Using Agile and DevOps methodologies
« Technology stack: Execution environment based on
Docker containers and Kubernetes orchestration, in
which microservices can deploy and run

In this article, we will focus on the third item above —
the execution environment for microservices. Let's take
inspiration from cloud-based microservices and try to
Imagine the technological underpinnings for running
iIn-vehicle microservices.

Benefits of container-based

terms of memory footprint (again, requiring GBs of
RAM per VM). Containers are a couple of orders of
magnitude more frugal than VMs, allowing many more
containers to run on the same computing resources

 Just enough isolation. VMs offer the optimal level of

Isolation needed to protect different cloud customers
from each other while their VMs are running on the
same underlying hardware of the cloud provider.
Containers offer more lightweight isolation, which is
appropriate because containers within a solution
belong to the same owner so there is no malicious
threat from one container to another. As a trade-off
for this lower level of isolation, you get the lower
container overhead as discussed above.
Heterogeneous toolsets. Container packaging allows
agile teams to mix and match different development
toolsets (such as programming languages or
frameworks) within the same solution.

Given the popularity of container-in-the-cloud solutions,

it was only natural to try to adopt them for the in-vehicle

environment. There would be a host of obvious benefits,
including:

« The wide availability of container-in-the-cloud
expertise promises easy sourcing of talent for SDV
development, as opposed to the more specialized
skillset required for traditional automotive software
frameworks

microservices

Containerization brought several significant benefits to

microservice implementations:

* Lower overhead than VMs. Before containers,
solutions were built using Virtual Machines (VMs),
which were more resource-hungry, both in terms of
storage (VM disk images measured in GBs) and in

luxoft.com



https://www.luxoft.com/
https://www.luxoft.com/whitepaper/the-agility-challenge-for-software-defined-vehicles
https://www.luxoft.com/whitepaper/sdv-ops-solving-the-agility-challenge-for-software-defined-vehicles

* Rich container toolsets could be seamlessly
extended from the cloud into the vehicle for

continuous integration and deployment of vehicle
features and updates

« Container orchestration in the vehicle could improve
the reliability characteristics of vehicle functionality

Downsides of using containers
for in-vehicle microservices

While in-vehicle containerization does deliver on many
of its promised benefits, it still has significant
shortcomings that make it insufficient as an execution
environment for in-vehicle microservices. This is not
surprising though, because current container
technologies were developed for a different set of
objectives and constraints, while targeting a different
environment — the cloud. Containers in the cloud can
enjoy limitless availability of compute resources, with
constant connectivity that is very fast and virtually free
— unlike the in-vehicle environment. What's more,
container orchestration in the cloud was designed for
executing compute tasks under much less stringent

time and quality constraints than in-vehicle processing.

The main drawback that makes containers a
less-than-ideal choice of in-vehicle microservice
environment is the level of isolation. The same level of
isolation that was considered lightweight on the cloud
compared to VMs is now too strong for the in-vehicle
microservices purpose. And just like in the cloud, you
pay for this unneeded isolation with extra overhead,
which manifests in several ways:
* Higher memory consumption. A running Docker
container can easily add tens of megabytes of
memory footprint to even the smallest of

microservices. Such an overhead may be negligible in

a cloud solution because you can always add a few
extra megabytes of memory for literally a penny per
month, but the in-vehicle environment has a fixed
amount of memory and there is no easy way to add
more

» Architectural degradation. In order to minimize the

total negative impact of the per-microservice
overhead, you will have to design the system with a
small number of large microservices. This is
obviously a wrong path to take as the microservices
would be regressing towards a Monolith architecture

+ Large granularity of updates. If the in-vehicle
system consisted of large microservices, it would
reduce the agility of software delivery into the
vehicle, because larger software packages take
longer to download and install

« Performance impact. Isolation between different
microservices forces them to communicate over
network channels like REST APIs, even when residing
on the same physical compute node. This introduces
additional delays in processing: Establishing
connections (especially high impact in case of secure

connections like HTTPS or TLS), serialization and
deserialization of requests and responses, going
through the network layers, etc.

Solution? Less isolation

So, how can we get rid of this unwanted microservice
overhead? Well, let's use the same trick that helped
containers win over VMs — lowering the isolation level.
This makes great sense because our in-vehicle solution
will be mostly composed of trusted first-party software
components that don't need to be protected from each
other.

Of course, there may be scenarios that require stronger
isolation, for example when you need to run untrusted
“guest code.” In situations like this, you can always
isolate untrusted code in a container and use that
isolation to your benefit.

The example above demonstrates that containers can
serve different purposes: They can be used as a
packaging format, as an architectural construct, or as a
hosting mechanism. These aspects are somewhat
orthogonal and should be considered separately. In
this example, the fact that we decided to isolate some
components in a container doesn’t force us to use
container-level granularity for the entire microservice
architecture.

Microservice granularity

So how do we determine the right granularity for our
in-vehicle microservices? Microservice architecture
does not give a definitive answer; it only hints that
services should be small — hence the "micro" in the
name — but doesn't tell us exactly how small.

ed vehicles | luxoft.com



https://www.luxoft.com/

Throughout the history of microservices, various
approaches to granularity have been considered: from
large quasi-monolith services to very fine-grained
designs where every class is a microservice. As it's the
high overhead that pushes microservices in the
direction of large granularity, low overhead is
associated with fine-grained microservices — and this
IS exactly what we're after.

Let's try to estimate how many microservices a vehicle
could have in this fine-grained approach. An average
modern car has over 100 million lines of software code
in it. As a point of reference, the previous generation of
Ford F-150 had 150 million lines of code, and that was
back in 2016. Let's conservatively assume that 10% of

that code becomes microservices — that's 10 million
lines. With our “every class is a microservice” approach
in mind, how many classes would that be? For this
rough estimation, let's assume short, well-refactored
classes of about 100 lines each — that gives us roughly
100 thousand microservices. Nobody would even
consider running this many docker containers on the
in-vehicle hardware that typically has a few gigabytes of
memory, but other microservice platforms can support

such scale with ease.

Actor frameworks to the rescue

One possible option for a low-overhead, fine-grained
microservice platform is an Actor framework. This is a
software framework based on the Actor model of
computation theoretical foundation invented 50 years

ago by Professor Carl Hewitt. Without going too deep

into the theory, Actors are small encapsulated

components that have only a few simple rules, such as:

» Actors have identity

» Actors can send messages to other Actors (or
themselves)

» Actors can keep state

Beyond that, the Actor model doesn’t prescribe
anything else, such as: What language Actors are
implemented in, where they are located (same
process, same machine, elsewhere on the network),
what hardware/OS they support, etc. And yet, the
model has proven powerful enough to find success in
many implementations across different domains,
from telecom to gaming services, and other highly
performant distributed systems.

Implementations of Actor models exist for most
programming languages, such as Java, .NET, C/C++,
Rust, Go, and many more. In some cases, Actor
support is built into the language itself, as is the case
with Erlang — the language behind the first success
story of the Actor model when Ericsson used it in their
telecom products. Some Actor frameworks even
support multiple languages, thus enabling one of the
benefits of container-based microservices we
mentioned above — heterogeneous toolset, or the
ability to mix and match different languages in the
same solution. While we're on the topic of
multi-lingual Actor frameworks, we should mention
the availability of Actors for Web Assembly, which is a
development toolset that is rapidly growing in
popularity.

Most importantly, modern Actor frameworks have all
the necessary capabilities we would expect from a
microservice runtime, such as service placement and
discovery, service communication, observability and
monitoring, and developer productivity, among
others.



https://www.luxoft.com/
https://en.wikipedia.org/wiki/Actor_model
https://en.wikipedia.org/wiki/Actor_model
https://cmte.ieee.org/futuredirections/2016/01/13/guess-what-requires-150-million-lines-of-code/

Our findings

We have built several implementations of in-vehicle systems using different Actor frameworks, including a
recent project based on Microsoft Orleans - an open-source framework that was developed at Microsoft
Research and saw its first commercial use in 2012 during the development of Microsoft's biggest Xbox game:
Halo. Orleans is famous for introducing a new Actor concept: Virtual Actors, and it also has other innovative
features that we found useful in our implementation, such as Orleans Streams.

One may argue against Orleans as the best choice of Actor framework for some in-vehicle scenarios because it is

built on .NET, which is a garbage-collected environment and therefore incurs additional performance overhead.

However, this should not be viewed as a dealbreaker — there are successful examples of top auto

manufacturers using garbage-collected software platforms in their vehicles.

Here are a few noteworthy highlights from our project: to simultaneously process a few thousand vehicle
signals, each arriving at 10-millisecond intervals

» Scale. We were able to host 1 million Actor instances
in a 4 GB of RAM footprint. Such scale should provide
ample room for fairly complex microservice
implementations

» SDV plug-n-play. Software-defined vehicles need to
have dynamic behavior in order to react to changing
operating conditions, including changes in the vehicle
hardware that can happen during normal operation.
A canonical example of such a hardware change is
called the Trailer scenario — this is when a trailer is
connected to the vehicle and the SDV system must
adjust its behavior in response to this change. We
have implemented the plug-n-play model for SDV

Conclusion

I \n-vehicle microservices
architectures can unlock highly
desirable agility benefits in

Actors that allows the system to re-configure the
Actor components on the fly, without requiring a
system restart. After the plug-in event, the trailer's
door locks started to participate in the “Central Lock”

feature of the vehicle. Also, the trailer's backup
camera substituted the vehicle's rear camera (which
was now blocked by the trailer) on the 360-view
display. Once the trailer was unplugged, original
vehicle behavior was restored.

The Actor components responsible for the trailer
behavior can be provided by the trailer itself or can
be obtained from a cloud repository of SDV
plug-n-play components. In a situation where the
plug-n-play components originate from an untrusted
source, they will be executed in a separate container,
isolated from the rest of the SDV Actors. This
example demonstrates how fine-grained Actors and
strongly isolated containers can work together to
enable desirable vehicle capabilities

Performance. The latest release of the Orleans
framework can process hundreds of thousands of
events per second on a single-node modern
hardware (according to benchmarks) and we have

observed similar numbers in our measurements. As a

matter of example, that would be sufficient to

software-defined vehicles.
However, the ubiquitous approach
to microservices that is based on
container orchestration is not
efficient enough given the
constraints of the in-vehicle
compute environment. As a
recognized innovator in
software-defined vehicles, Luxoft is
pursuing new approaches to
Implementing in-vehicle
microservices, such as SDV Actors.
Can your SDV solutions benefit
from taking a fresh perspective on
microservices? You can stay
informed about this and other
topics related to SDVs here or by
following us on Linkedin.

SDV Actors: In search of a better microservices environment for software-defined vehicles | luxoft.com



https://www.luxoft.com/
https://www.linkedin.com/showcase/luxoft-auto/
https://www.luxoft.com/industries/automotive
https://devblogs.microsoft.com/dotnet/whats-new-in-orleans-7/#dramatic-performance-improvements
https://learn.microsoft.com/en-us/dotnet/orleans/streaming/?pivots=orleans-7-0
https://www.microsoft.com/en-us/research/publication/orleans-distributed-virtual-actors-for-programmability-and-scalability/
https://github.com/dotnet/orleans

Apbout the author

Andre Podnozov m
Chief Architect
apodnozov@dxc.com

As a seasoned technology leader at Luxoft, Andre has a
wealth of expertise regarding the future of mobility. In his
role as Chief Architect of Connected Mobility, he's shaping

the landscape of software-defined vehicles by leveraging
the latest advancements in |oT, Al/ML, Digital Twins and

other exponential technologies. By bridging the gap
between cloud, edge and in-vehicle systems, Andre is
revolutionizing the way we think about transportation.

About Luxoft

_uxoft, a DXC Technology Company delivers digital advantage for software-defined organizations, leveraging domain
Knowledge and software engineering capabilities. We use our industry-specific expertise and extensive partnership
network to engineer innovative products and services that generate value and shape the future of industries.

For more information, please visit luxoft.com

© 2024 Luxoft, A DXC Technology Company. All rights reserved.


https://www.luxoft.com/
https://www.linkedin.com/in/andrepodnozov/

	SDV Page 1
	SDV Page 2 (0-00-00-00)
	SDV Page 3 (0-00-00-00)
	SDV Page 4 (0-00-00-00)
	SDV Page 5 (0-00-00-00)
	SDV Page 6 (0-00-00-00)

