
by Andre Podnozov, Chief Architect

April 2024

SDV transition from
firmware to workloads

Abstract
As with many technology acronyms, the term SDV is ambiguous — it doesn’t make it very easy to understand the
meaning of the “software-defined vehicles” concept. In this article we will explain Luxoft’s point of view on SDVs and
will show a path that leads from the old, pre-SDV approach to the new, workload-based architecture. We will also
discuss how important, cross-cutting concerns like security, OTA and networking apply in the new approach.

Historical context leading up to SDVs

Before the concept of “software-defined vehicles” was
introduced, vehicles already had lots of software in
them. But that software was tightly coupled to specific
hardware components called ECUs. At that point,
vehicles contained 100+ million lines of computer
code spread out among 100+ ECUs, and yet those
ECUs were treated as “black boxes” — opaque from
a software point of view. In essence, software was
being approached with a hardware mindset, which
is a limiting factor because software and hardware
components are very different in the product lifecycle,
maintenance requirements, cost structure, etc.
As the amount of in-vehicle software continued to
increase, this inefficient approach to software started
to constrain the rate of progress in the automotive
industry. At the same time, automotive consumers
increasingly expected faster innovation, including new
features added throughout vehicle ownership. This
tension between the buyers’ unwillingness to accept
the status quo, and automakers’ inability to offer
more agile innovation was exacerbated by regulatory
pressures to develop electrification (tightening
emission standards) and advanced safety assistants
(initiatives like Vision Zero). The combination of these
three factors created favorable conditions for the SDV
revolution.

Our definition of SDVs

Now it becomes clear that it’s not correct to say that
“an SDV is a vehicle defined by software”, but rather
we should say, “an SDV is a vehicle that is not defined
by hardware”. Of course, we don’t mean mechanical
hardware (like wheels, or seats, or body panels, etc.),
instead we mean the ECUs — the compute hardware
to which software was coupled in the old, non-SDV
approach.

But what is the nature of the coupling between software
and ECU hardware? It comes from the fact that software
is stored in ECUs in the form of firmware, which, as the
name suggests, is something between “soft”- and “hard”-
ware. Traditionally, firmware was meant to be used for
low-level interfacing with hardware devices, such as
calibrated reading of sensor values, for example. But
since then, a lot of high-level vehicle capabilities have
found their way into ECU firmware, and this is exactly
what the SDV approach needs to change.

Therefore, here is our full definition of an SDV:

In SDVs, the vehicle capabilities are not
defined by ECUs, because the software that
implements the capabilities is not burned into
ECU firmware.

SDV transition from firmware to workloads | luxoft.com 2

https://en.wikipedia.org/wiki/Vision_Zero
https://en.wikipedia.org/wiki/Firmware
https://www.luxoft.com/

From firmware workloads

Even if the software is decoupled from compute, it still
needs to be executed somewhere. Where? In pre-SDVs,
this question was answered at design time: “Software
X (or most likely firmware X) always runs on ECU Y”.
In SDVs, software X will not be baked into a dedicated
ECU as firmware, instead it will be placed as a workload
X somewhere on the in-vehicle compute cluster. This
placement may:

•	 Be determined at runtime based on compute
capabilities required by a given workload (e.g.,
“execute this workload on any compute node that has
AI acceleration capabilities”)

•	 Change during vehicle operation (e.g., “migrate
this workload to a different compute node due to
hardware failure of current node”)

•	 Be transient (e.g., “this guest workload is started when
a passenger boards a taxi, and terminated when
the passenger exists”). Such dynamic behavior is
necessary to meet the requirements of modern SDVs

What about ECUs?

If software features are decoupled from ECUs, what
do we need ECUs for? In the non-SDV architecture,
ECUs have other responsibilities in addition to hosting
software features:

•	 Handling inputs and outputs from “peripherals” like
sensor and actuators

•	 Communicating with components over various
in-vehicle networks

In fact, these two responsibilities are closely
related — they bridge the gap between the analog
nature of some sensors/actuators, and the digital
nature of vehicle networking. Let’s look at the
diagram below to illustrate this idea.

The blue color here represents digital devices and communications, and green is analog devices. Notice that green
devices must connect directly to the ECU, as opposed to blue devices that communicate over a bus.

SDV transition from firmware to workloads | luxoft.com 3

https://www.luxoft.com/

In the SDV world, we can get rid of ECUs completely
when all devices become “Smart” and they can perform
digital communication, as in the following diagram:

Although, if we are to be 100% technically honest, a blue
device is nothing more than a green device with a mini-
ECU built into it. But this is exactly how we achieve our
original goal: By decomposing a complex entity (big ECU)
into orthogonal concerns (software-defined workload vs.
signal digitizer + bus I/O) which can later be decoupled
in accordance with the SDV architectural principles. Such
decomposition is one of the primary instruments for
managing the growing complexity of in-vehicle systems.

What is the in-vehicle compute cluster?

The in-vehicle compute cluster consists of several
nodes which are shared by various feature workloads.
Some nodes may have distinctive capabilities, such as
AI acceleration, so that the workloads requiring such
capabilities can be placed on the matching nodes. The
number of nodes will be at least three (but can be five
or even more) — this allows for hardware redundancy
and maintaining consensus in the cluster. A five-node
cluster may resemble zonal architecture, which can be
considered as a half-way step toward a pure
workload-based approach.

Cluster nodes should have sufficient resources to host
multiple workloads, with room to spare in case they
need to accept workloads from a failed neighboring
node. Therefore, we are talking about HPC-class nodes,
although we can imagine a scenario when ECU-class
nodes are also included in the cluster. This would allow
for running workloads closer to the data sources. It may
also provide a smoother transition path for automakers
to start building SDV architectures without requiring a
complete hardware revamp.

OTA in SDVs

Because software features should not be baked into ECU
firmware in our view of SDVs, it logically follows that OTA
should not flash such updates into ECUs. Doing so would
be considered an anti-pattern in SDVs. The correct
way to update software features would be by using a
workload management approach, like our LEAF (Luxoft
Edge Acceleration Framework). Examples of workload-
oriented OTA updates are containers, modules, ML
models, etc.

OTA updates at the workload level are less disruptive
than firmware updates because they are:

•	 Done with no downtime ideally, or in the worst case
with very short downtime (<1 minute reboot)

•	 Transparent to the user in most cases
•	 Frequent (up to multiple times a day)
•	 Easier to rollback in case of issues

SDV transition from firmware to workloads | luxoft.com 4

https://www.luxoft.com/blog/accelerating-connected-vehicle-innovation-leaf-aws
https://www.luxoft.com/

But ECU firmware can be updated through OTA if the
changes are not related to vehicle features. Examples of
such OTA updates are:

•	 Updates in mini-ECU functionality of smart devices.
As we discussed above, smart devices have mini-
ECUs built into them which are responsible for
analog<->digital conversion, network communication,
authentication and encryption. So, for example, when
a network protocol or an encryption algorithm needs
to change, it would be done through an OTA update
of the smart device firmware. However, these changes
should be very rare, and we should consider smart
device firmware quasi-unchangeable, after initial bug
fixing and stabilization. Also, updates to smart device
firmware are much smaller and simpler, because their
mini-ECUs have a limited set of responsibilities

•	 Periodic updates to the cluster runtime (such as
Wasm-based) — if the ECU participates in the
in-vehicle cluster for hosting workloads. These would
go into the firmware. And to re-iterate, workloads
themselves would not go into the firmware

•	 Security patches — these should be done as soon as
vulnerabilities are identified

To sum up: The majority of OTA updates in SDVs are
done at workload level, whereas firmware updates are
treated as exceptional cases.

Advantages of bus-based networking

As we are trying to bring good ideas from Big Tech
into automotive systems, we should also recognize
and take advantage of the unique benefits of
automotive architectures. One such benefit is
bus-based communication, in comparison to
point-to-point networking that Big Tech has settled on.
In the bus-based approach, networking hardware (hubs
and switches) is not a single point of failure anymore.
Bus network architecture also makes it easier to
implement redundancy for increased reliability.
Most automakers have adopted Automotive Ethernet
for high-speed communication in their vehicles.
For example, Tesla used the term “Etherloop” when
describing their latest Cybertruck networking, and they
explicitly mentioned redundancy as one of the benefits.

SDV transition from firmware to workloads | luxoft.com 5

https://www.luxoft.com/

Security considerations for SDVs

Pre-SDV architectures treated the in-vehicle environment
as a trusted system. However, the experience of building
connected products in other domains has taught us
to apply defensive security principles like “Zero Trust”,
“Expect Compromise”, “Defense in depth”, etc. to the
in-vehicle environment. The automotive industry has
dedicated a lot of attention to cybersecurity of in-vehicle
systems. However, new attacks continue to surface, such
as the recent compromise of secure communication in
Time-Triggered Ethernet.

Therefore, SDV architecture must continue to prioritize
security of in-vehicle systems. We can borrow some of
the security best practices from the IoT toolset, such as:

•	 Certificate-based authentication
•	 Individualized device identities
•	 Encrypted communication
•	 Hardware root of trust

Which means that every smart device that connects
to the in-vehicle network must support the above
techniques. It may seem computationally expensive
to encrypt all communications on a microcontroller-
class chip typical of a mini-ECU inside a smart sensor.
However, new cryptographic algorithms are being
developed that are optimized for low-compute devices.

Luxoft contribution

Luxoft has been putting continued efforts into the
development of SDV architectures based on the
workload approach. Here are a couple of recent
examples:

•	 SDV Actors whitepaper describes a
workload-based architecture implemented
using the Actor model of computation

•	 Luxoft Edge Acceleration Framework
post describes an SDV environment
that uses container workloads

Stay tuned for future publications where we will describe
our development of additional types of in-vehicle
workloads, such as ML models.

Here is a conceptual diagram:

SDV transition from firmware to workloads | luxoft.com 6

Conclusion
The view on SDVs described here helps
automakers manage the growing complexity
of in-vehicle software — it enables the highly
flexible dynamic behavior that will be required of
tomorrow’s autonomous vehicles. At the same
time, it allows agile delivery of vehicle features
expected by today’s customers.

To discuss your needs regarding SDV
transformation and adopting the workload
approach, get in touch with one of our experts
through the contact page.

https://web.eecs.umich.edu/~barisk/public/pcspoof.pdf
https://web.eecs.umich.edu/~barisk/public/pcspoof.pdf
https://www.luxoft.com/whitepapers/sdv-actors
https://www.luxoft.com/blog/accelerating-connected-vehicle-innovation-leaf-aws
https://www.luxoft.com/
https://www.luxoft.com/contact-form#industry-automotive
https://www.luxoft.com/contact-form#industry-automotive

About the author

As a seasoned technology leader at Luxoft, Andre has a
wealth of expertise regarding the future of mobility. In his
role as Chief Architect of Connected Mobility, he’s shaping
the landscape of software-defined vehicles, leveraging the
latest advancements in IoT, AI/ML, Digital Twins and other
exponential technologies. By bridging the gap between
Cloud, Edge and In-vehicle systems, Andre is revolutionizing
the way we think about transportation.

Andre Podnozov
Chief Architect, Connected Mobility
apodnozov@dxc.com

About Luxoft
Luxoft, a DXC Technology Company, is a trusted partner in global digital transformation and a leader in delivering competitive
advantage in the software-defined world. We engineer and deliver innovative services and products that shape the future of
industries by leveraging our extensive partnership network and deep industry-specific expertise.

For more information, please visit luxoft.com

© 2024 Luxoft, A DXC Technology Company. All rights reserved.

mailto:apodnozov%40dxc.com%20?subject=
https://www.linkedin.com/in/andrepodnozov/
https://www.luxoft.com

